为机床工具企业提供深度市场分析                     

用户名:   密码:         免费注册  |   点击 进入企业管理  |   申请VIP  |   退出登录  |  

English  |   German  |   Japanese  |   添加收藏  |  

车床 铣床 钻床 数控系统 加工中心 锻压机床 刨插拉床 螺纹加工机床 齿轮加工
磨床 镗床 刀具 功能部件 配件附件 检验测量 机床电器 特种加工 机器人

TPI
搜索
热门关键字:

数控机床

 | 数控车床 | 数控系统 | 滚齿机 | 数控铣床 | 铣刀 | 主轴 | 立式加工中心 | 机器人
      用户频道:    应用案例 |  汽车 |  模具 |  船舶 |  电工电力 |  工程机械 |  航空航天 |  仪器仪表 |  通用机械 |  轨道交通 |  发动机加工 |  齿轮加工 |  汽轮机加工
您现在的位置:数控机床市场网> 专题>薄壁零件加工技术与工艺专题
普通机床一刀成形加工薄壁零件
2012-12-12  来源:  作者:邢台职业技术学院 李明

      目前薄壁零件数控加工,主要采用高速加工技术。为了保障薄壁零件有效加工,在工艺设计阶段,采用有限元分析技术,获取薄壁零件变形区域,采用数控补偿技术加以修正,以保证加工的精度;优化切削参数和加工路径,以减小变形;通过开发特制刀具及改造机床(如双主轴机床等),来解决变形问题;通过新的装夹方案和架构调整,来增强薄壁零件的刚度等措施。由于工艺的保密性,相关技术资料只涉及了问题的表层部分,薄壁零件加工技术的获取,并没有随着高速加工机床的引进而得到解决。薄壁零件的数控加工的关键技术,还要靠自己的努力发展去解决。

 

      1 薄壁零件加工工艺关键技术

 

      薄壁零件是指壁厚与内径曲率半径(或轮廓尺寸)之比小于1:20 的零件。薄壁零件的共同特点,是壁薄、强度低、抵抗变形能力差,但并不表示薄壁零件在常态下,就会发生塑性变形,其有一定的弹性力,在某些特殊复杂的环境中,发挥其的重要作用,也可以说薄壁零件处于弹性变形阶段。

 

      为了更好地理解薄壁零件的加工特点,我们可以将其分解成若干小段的杆件组成,即薄壁零件弹塑性变形的受力分析微分化处理。首先假设杆件处于静定梁状态,两端承载力是无限大,来源于薄壁零件支撑点的承载力,从塑性分析中,我们得知静定梁的中间部位最为严重,若刀具切削薄壁零件时,判断薄壁方向切削力F 小于零件材料极限载荷 则未引起静定梁的变形,单个的静定梁处于弹性阶段。若每个小的静定梁单元是稳定的,薄壁零件作为整个系统也是稳定的,所以切削力F 小于极限载荷FP的情况下,假设成立。根据切削力F 小于极限载荷FP的条件,来求解薄壁零件壁厚的最大切削量。根据最大切削量加工和加工精度要求,选择合适精加工余量,那么薄壁零件始终保持弹性变形阶段,实现薄壁零件数控加工一刀成形,从而提高加工效率。

 

      2 切削力数学模型

 

      实验证明,在机床加工系统和刀具几何参数确定的前提下,加工切削力F 主要受到切削速度(或主轴转速)n、进给速度νf 、背吃刀量ap 和切削宽度(或切削高度)ae 等因素的影响,且基本上成线性关系。

 

      我们首先将相关实验数据,列成切削速度(或主轴转速)n、进给速度νf 、背吃刀量ap 和切削宽度(或切削高度)ae 以及切削力F 的正交实验数据表格,应用多元线性回归分析方法,建立切削力的预测模型和表面粗糙切削力

 

      F = β1 + β2 n + β3 νf + β4 ap + β5 ae

 

      表面粗糙度Ra= b1 + b2 n + b3 νf + b4 ap + b5 ae

 

      3薄壁零件最大切削量

 

      根据薄壁零件塑性变形的临界条件,即切削力F度的预测模型。小于极限载荷 计算最大背吃刀量,获得薄壁零件的壁厚薄壁零件壁厚的最大切削量ap max。计算过程如下:

 

      当薄壁零件处于临界条件时,背吃刀量ap 取值为最大切削量ap max,切削力为F = β1 + β2 n + β3 νf + β4 ap max + β5 ae,极限载荷为 其中, b 为刀刃切削宽度在薄壁法线方向的投影; h 为薄壁零

件的壁厚; l 为薄壁相邻支撑点的跨度;

 

      σs 为材料屈服极限。

 

      则临界状态F = β1 + β2 n + β3 νf + β4 ap max + β5 ae=5-1-

 

      薄壁零件壁厚的最大切削量计算得

 

 

      根据薄壁零件壁厚的最大切削量和零件精度的要求,选择合适精加工余量,实施薄壁零件最后一道切削加工。

 

     4仿真研究

 

      图1 3Cr2Mo 注塑模具钢零件的壁厚为2 mm的薄壁部分结构图,长100 mm,表面粗糙度为Ra =1.6 μm,尺寸公差等级为IT8 级。

 

 

      实验条件:铣削平面,材料3Cr2Mo 注塑模具钢(调质,硬度HRC2830)。刀具为直径10 mm,螺旋角30°,双刃,直柄整体式硬质合金平头立铣刀,TiAIN 涂层。实验结果如表1 所列。

 

      铣削平面(3Cr2Mo 注塑模具钢)的数学模型为分列如下:

 

      X 向切削力

 

      FX = 66.714 5 - 0.002 4n + 0.011 2νf + 37.475 8ap+ 2.087 5ae

 

      表面粗糙度

 

      Ra = 0.125 9 + 0.0n + 0.000 2νf + 0.281 4ap+ 0.016 7ae

 

      Y 向切削力

 

      FY = 15.08 99 - 0.000 7n + 0.003 5νf + 36.598 8ap+ 3.570 0ae

 

      Z 向切削力

 

      FZ = 15.607 4 - 0.000 2n + 0.002 5νf + 12.970 0ap+ 1.537 5ae

 

      根据表面粗糙度和加工公差等级,我们选择粗铣-精铣的加工工艺方案。

 

      工艺参数为:

 

      背吃刀量为ap = 0.1 mm

 

      转速n = 2 000 r/min

 

      进给速度νf = 100 mm/min

 

      切削深度为ae = 4 mm

 

      由薄壁法线方向受力公式

 

      FX = 66.714 5 - 0.002 4n + 0.011 2νf + 37.475 8ap+ 2.087 5ae

 

      可以求解得:切削力FX = 75.132 1 N,表面粗糙度Ra = 0.24 μm,符合加工粗糙度要求。根据薄壁零件塑性变形的临界条件,其中材料3Cr2Mo 注塑模具钢屈服极限σs = 680 N/mm2。当前加工工艺参数下,薄壁零件极限载荷为:

 

      FP =bh2 / l)σs = 108.8 N,薄壁零件在加工中处于弹性变形阶段。

 

      计算薄壁零件壁厚的最大切削量为:

 

      ap max = 0.9984 mm。因为ap max ap,所以上述加工工艺方案可行。若进一步提高加工效率,可以增加进给速度和切削深度。

 

      5结束语

 

      一刀成形工艺,解决了目前薄壁零件依赖高速加工技术的高成本和技术难题,大大降低了薄壁零件加工成本,提高了效率。同样“一刀成形”工艺的提出,为普通数控机床实现薄壁零件高效率加工的提供了可行性方案。

    投稿箱:
        如果您有机床行业、企业相关新闻稿件发表,或进行资讯合作,欢迎联系本网编辑部, 邮箱:skjcsc@vip.sina.com
名企推荐
山特维克可乐满
哈斯自动数控机械(上海)有限公司
西门子(中国)有限公司
哈挺机床(上海)有限公司
北京阿奇夏米尔技术服务有限责任公司
陕西秦川机械发展股份有限公司