为机床工具企业提供深度市场分析                     

用户名:   密码:         免费注册  |   申请VIP  |  

English  |   German  |   Japanese  |   添加收藏  |  
沈阳机床

车床 铣床 钻床 数控系统 加工中心 锻压机床 刨插拉床 螺纹加工机床 齿轮加工机床
磨床 镗床 刀具 功能部件 配件附件 检验测量 机床电器 特种加工 机器人

机器人

电工电力 工程机械 航空航天 汽车 模具
仪器仪表 通用机械 轨道交通 船舶

搜索
热门关键字:

数控机床

 | 数控车床 | 数控系统 | 滚齿机 | 数控铣床 | 铣刀 | 主轴 | 立式加工中心 | 机器人
您现在的位置:机器人> 行业资讯>人工智能,需对接产业“痛点”而非噱头
人工智能,需对接产业“痛点”而非噱头
2019-12-11  来源:新华社  作者:-
 
       智能安保、语音识别、智能客服……几年间,被视为新一轮产业变革核心驱动力的人工智能技术边界不断扩大,已大踏步走进寻常百姓家。然而,相比在安防、金融、零售业的火热推进,人工智能技术在工业制造、农业等实体经济领域的深度融合仍存在诸多困难,尚处于起步阶段。
  
       中国人工智能学会理事长戴琼海就有这样的感受,在近日召开的第八届吴文俊人工智能科学技术奖颁奖典礼暨2019中国人工智能产业年会上,他抛出了这样一个问题:“当前,解决人工智能与实体经济深度融合的发展瓶颈,最后一公里路该往何处去?”
  
       这不是他一个人的感受。“人工智能为实体经济赋能,是趋势和前景,但做起来,还有一些亟待解决的问题。”中国科学院院士张钹说。
  
       智能制造的信息化基础仍薄弱
  
       人工智能赋能以制造业为代表的实体经济,自动化、信息化是基础。但来自艾瑞咨询的一份报告显示,2018年我国制造业企业数字化设备联网率仅为39%。
  
       在张钹看来,这是人工智能与实体经济深度融合的一大阻碍。
  
       “制造业智能化的前提是自动化和信息化,这要求各细分行业加强设备自动化改造,提高生产自动化程度。然而,目前来看,许多行业工厂生产流程的自动化、信息化水平还很低,人工智能技术也就难以对接。”张钹说。
  
       科技部新一代人工智能研究发展中心副主任李修全认同这一观点:“可以说,在人工智能应用于实体经济特别是工业这方面,中国还是存在一些劣势。”
  
       人工智能要发挥“威力”需要数据支撑。在李修全看来,自动化和信息化的不足直接导致的是工业数据的缺乏。“与国外先进制造业相比,他们所拥有的工业控制和传感设备在生产中积累了大量数据,可帮助人工智能落地。而我们的数据不足,而且引入的信息化设备多数也是进口,数据不为我们掌握。”
  
       其次是智能制造一体化的问题。工业领域的人工智能技术落地需要体系化,“以缝纫机器人的生产为例,需要人工智能底层技术、算法等软件与传感控制设备等硬件相结合,缺一不可,对我们的一些硬科技门类提出了挑战。”李修全说。
  
       此外,制造业在生产环节中容错率很低,但当前人工智能技术引入并不能保证100%的准确。“比如电力行业就基本不容有差池,那么人工智能在融入制造业的过程中,就要选择有一定容错率的工业场景。”李修全说。
  
       张钹认为,以上这些问题使得智能制造的推进难度更大,其解决也有赖于制造业整体的自动化、信息化发展。
  
       需对接产业“痛点”而非噱头
  
      “观察各行各业,你会发现企业对人工智能这种新的驱动力都有着迫切的应用需求,但产业化实际上‘雷声大,雨点小’,有的技术仅仅是锦上添花。”百度风投CEO刘维说。
  
       他以近两年颇为热门的智能养猪为例,许多项目在养猪场内应用了猪脸识别技术,然而,就算能够精准识别出每一只猪的不同,但对于如何进一步察觉疫情发生和科学改善养殖,技术团队却往往没有进一步的解决方案,“他们仅仅把‘智能养猪’做成一个概念,然而,我认为,真正能够提高产业的生产环节效率和竞争力,才是人工智能技术是否深度融合实体经济的硬标准”。
  
       智能企业云知声联合创始人李霄寒则认为,人工智能本身是一个势能器,它的落地需要场景,但行业中提供场景的企业和技术提供者存在着巨大的信息不对称,亟须架起这个“桥梁”。
  
       “身为技术供应商,我们需要了解行业的刚性需求到底在哪里。”小i机器人高级副总裁许弋亚认同这一看法,他认为,要推动人工智能与实体经济真正深度融合,构建一个良好的产学研生态非常重要。一方面,从技术、产品到解决方案交付,人工智能技术企业需要充分对接行业需求,抓住机会做好应用;另一方面,人工智能技术企业需要与高校、科研院所在模型、算法等基础研究方面做出更多的合作交流。
  
       对此,国家自然科学基金委人工智能处处长吴国政建议,行业学会、协会、基金会等相关组织应当发挥平台作用,共同关注行业需求,建立定期交流机制,以便发现更多人工智能与实体经济深度融合的根本科学问题。
  
       复合型专业人才培养待支持
  
       高端、复合型人才严重缺乏也是人工智能与实体经济深度融合的一个瓶颈。
  
       对接产业需求,人才要了解行业,也要掌握人工智能关键技术,能够进行应用开发。然而,戴琼海指出,由于人工智能技术的交叉性,我国在人工智能人才结构上呈现出高端人才和工程师“两少”特点,工程师的人才缺口甚至达到了500万~1000万。
  
       近日由清华大学-中国工程院知识智能联合研究中心、中国人工智能学会吴文俊人工智能科学技术奖评选基地联合发布的《2019人工智能发展报告》则指出,从人才竞争上来看,美国的人才数量遥遥领先,凸显了其在人工智能领域的人才优势。对于我国而言,人才数量在大部分领域领跑第二梯队,但与美国相比,中国高影响力学者数量明显不足,顶尖学者相对缺乏,中美之间还存在差距。
  
       “我国已开设了人工智能的本科教育,人才培养尚待时日,但人工智能与其他学科专业的交叉融合还不够深入。”中国人工智能学会教育工作委员会主任王万森说,他建议,应构建与新一代人工智能发展相适应的知识结构和课程体系,形成一个以智能科学与技术专业为核心,外加衍生层诸专业的新生专业类,即人工智能类专业。除上述核心层、衍生层专业外,还应支持复合型和交叉型专业的智能人才培养。
  
       “人工智能的应用只能以垂直的方式进入某一个场景,或者某一个领域行业,这决定了人才的培养方向,方能实现经济社会对新一代人工智能的需求。”王万森强调。
  
       “人工智能在许多行业领域还是刚刚开始,真正要让它全面落地产生价值,可谓任重道远。”中国平安保险(集团)股份有限公司首席科学家肖京道出了许多专家的心声,“我们需要的是踏踏实实地努力,一个一个去攻克难关。”
    投稿箱:
        如果您有机床行业、企业相关新闻稿件发表,或进行资讯合作,欢迎联系本网编辑部, 邮箱:skjcsc@vip.sina.com