为机床工具企业提供深度市场分析                     

用户名:   密码:         免费注册  |   申请VIP  |  

English  |   German  |   Japanese  |   添加收藏  |  
沈阳机床

车床 铣床 钻床 数控系统 加工中心 锻压机床 刨插拉床 螺纹加工机床 齿轮加工机床
磨床 镗床 刀具 功能部件 配件附件 检验测量 机床电器 特种加工 机器人

机器人

电工电力 工程机械 航空航天 汽车 模具
仪器仪表 通用机械 轨道交通 船舶

搜索
热门关键字:

数控机床

 | 数控车床 | 数控系统 | 滚齿机 | 数控铣床 | 铣刀 | 主轴 | 立式加工中心 | 机器人
您现在的位置:机器人> 企业动态>工信部印发指导意见 加快工业大数据产业发展
工信部印发指导意见 加快工业大数据产业发展
2020-5-25  来源:--  作者:-
 
       工业和信息化部近日印发《关于工业大数据发展的指导意见》,明确将促进工业数据汇聚共享、深化数据融合创新、提升数据治理能力、加强数据安全管理,着力打造资源富集、应用繁荣、产业进步、治理有序的工业大数据生态体系。并提出加快数据汇聚、推动数据共享、深化数据应用、完善数据治理、强化数据安全、促进产业发展、加强组织保障等七方面21条指导意见。
  
       一、总体要求
  
       坚持以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大和十九届二中、三中、四中全会精神,牢固树立新发展理念,按照高质量发展要求,促进工业数据汇聚共享、深化数据融合创新、提升数据治理能力、加强数据安全管理,着力打造资源富集、应用繁荣、产业进步、治理有序的工业大数据生态体系。
  
       二、加快数据汇聚
  
       (一)推动工业数据全面采集。支持工业企业实施设备数字化改造,升级各类信息系统,推动研发、生产、经营、运维等全流程的数据采集。支持重点企业研制工业数控系统,引导工业设备企业开放数据接口,实现数据全面采集。
  
       (二)加快工业设备互联互通。持续推进工业互联网建设,实现工业设备的全连接。加快推动工业通信协议兼容统一,打破技术壁垒,形成完整贯通的数据链。
  
       (三)推动工业数据高质量汇聚。组织开展工业数据资源调查,引导企业加强数据资源管理,实现数据的可视、可管、可用、可信。整合重点领域统计数据和监测数据,在原材料、装备、消费品、电子信息等行业建设国家级数据库。支持企业建设数据汇聚平台,实现多源异构数据的融合和汇聚。
  
       (四)统筹建设国家工业大数据平台。建设国家工业互联网大数据中心,汇聚工业数据,支撑产业监测分析,赋能企业创新发展,提升行业安全运行水平。建立多级联动的国家工业基础大数据库,研制产业链图谱和供应链地图,服务制造业高质量发展。
  
       三、推动数据共享
  
       (五)推动工业数据开放共享。支持优势产业上下游企业开放数据,加强合作,共建安全可信的工业数据空间,建立互利共赢的共享机制。引导和规范公共数据资源开放流动,鼓励相关单位通过共享、交换、交易等方式,提高数据资源价值创造的水平。
  
       (六)激发工业数据市场活力。支持开展数据流动关键技术攻关,建设可信的工业数据流通环境。构建工业大数据资产价值评估体系,研究制定公平、开放、透明的数据交易规则,加强市场监管和行业自律,开展数据资产交易试点,培育工业数据市场。
  
       四、深化数据应用
  
       (七)推动工业数据深度应用。加快数据全过程应用,发展数据驱动的制造新模式新业态,引导企业用好各业务环节的数据。
  
       (八)开展工业数据应用示范。组织开展工业大数据应用试点示范,总结推广工业大数据应用方法,制定工业大数据应用水平评估标准,加强对地方和企业应用现状的评估。
  
       (九)提升数据平台支撑作用。发挥工业互联网平台优势,提升平台的数据处理能力。面向中小企业开放数据服务资源,提升企业数据应用能力。加快推动工业知识、技术、经验的软件化,培育发展一批面向不同场景的工业APP。
  
       (十)打造工业数据应用生态。面向重点行业培育一批工业大数据解决方案供应商。鼓励通过开展工业大数据竞赛,助力行业创新应用。加大宣传推广力度,开展线上线下数据应用培训活动。
  
       五、完善数据治理
  
       (十一)开展数据管理能力评估贯标。推广《数据管理能力成熟度评估模型》(GB/T 36073-2018,简称DCMM)国家标准,构建工业大数据管理能力评估体系,引导企业提升数据管理能力。鼓励各级政府在实施贯标、人员培训、效果评估等方面加强政策引导和资金支持。
  
       (十二)推动标准研制和应用。加强工业大数据标准体系建设,加快数据质量、数据治理和数据安全等关键标准研制,选择条件成熟的行业和地区开展试验验证和试点推广。
  
       (十三)加强工业数据分类分级管理。落实《工业数据分类分级指南(试行)》,实现数据科学管理,推动构建以企业为主体的工业数据分类分级管理体系。
  
       六、强化数据安全
  
       (十四)构建工业数据安全管理体系。明确企业安全主体责任和各级政府监督管理责任,构建工业数据安全责任体系。加强态势感知、测试评估、预警处置等工业大数据安全能力建设,实现闭环管理,全面保障数据安全。
  
       (十五)加强工业数据安全产品研发。开展加密传输、访问控制、数据脱敏等安全技术攻关,提升防篡改、防窃取、防泄漏能力。加快培育安全骨干企业,增强数据安全服务,培育良好安全产业生态。
  
       七、促进产业发展
  
       (十六)突破工业数据关键共性技术。加快数据汇聚、建模分析、应用开发、资源调度和监测管理等共性技术的研发和应用,推动人工智能、区块链和边缘计算等前沿技术的部署和融合。
  
       (十七)打造工业数据产品和服务体系。推动工业大数据采集、存储、加工、分析和服务等环节相关产品开发,构建大数据基础性、通用性产品体系。培育一批数据资源服务提供商和数据服务龙头企业,发展一批聚焦数据标准制定、测试评估、研究咨询等领域的第三方服务机构。
  
       (十八)着力构建工业数据创新生态。支持产学研合作建设工业大数据创新平台,围绕重大共性需求和行业痛点开展协同创新,加快技术成果转化,推动产业基础高级化和产业链现代化。
  
       八、加强组织保障
  
       (十九)健全工作推进机制。省级工业和信息化主管部门(大数据产业主管部门)要建立工业大数据推进工作机制,统筹推进地方工业大数据发展。鼓励各地因地制宜加强政策创新,开展重大问题研究,实施政策评估咨询,助力工业大数据创新应用。
  
       (二十)强化资金人才支持。发挥财政资金的引导作用,推动政策性银行加大精准信贷扶持力度。鼓励金融机构创新产品和服务,扶持工业大数据创新创业。完善人才培养体系,培育既具备大数据技术能力又熟悉行业需求的复合型人才。
  
       (二十一)促进国际交流合作。围绕政策、技术、标准、人才、企业等方面,推进工业大数据在更大范围、更宽领域、更深层次开展合作交流,不断提升国际化发展水平。
  


       (来源:工信部 责编:兰海侠)
    投稿箱:
        如果您有机床行业、企业相关新闻稿件发表,或进行资讯合作,欢迎联系本网编辑部, 邮箱:skjcsc@vip.sina.com