为机床工具企业提供深度市场分析                     

用户名:   密码:         免费注册  |   点击 进入企业管理  |   申请VIP  |   退出登录  |  

English  |   German  |   Japanese  |   添加收藏  |  

车床 铣床 钻床 数控系统 加工中心 锻压机床 刨插拉床 螺纹加工机床 齿轮加工
磨床 镗床 刀具 功能部件 配件附件 检验测量 机床电器 特种加工 机器人

全弗
搜索
热门关键字:

数控机床

 | 数控车床 | 数控系统 | 滚齿机 | 数控铣床 | 铣刀 | 主轴 | 立式加工中心 | 机器人
      用户频道:    应用案例 |  汽车 |  模具 |  船舶 |  电工电力 |  工程机械 |  航空航天 |  仪器仪表 |  通用机械 |  轨道交通 |  发动机加工 |  齿轮加工 |  汽轮机加工
您现在的位置:数控机床市场网> 专题>机床在航空航天加工中的应用
飞机制造业对数控机床的需求
2011-12-16  来源:数控机床市场网  作者:数控机床市场网

20111017日,中国首架A380飞机由北京飞往广州,开始正式投入商业运营,开启了中国民航的大飞机时代。同时,也引发了业内近期讨论最多的一个话题:中国航企究竟该把有限的资金投向更先进、更环保的大飞机,还是更经济、更保险的小飞机?

A380里的机床应用

  

目前,中国民航共拥有在役飞机约1750架,波音公司预测到2030年,中国民航的机队规模将扩大到约5930架,是目前的3倍以上,中国将成为美国以外的全球最大飞机市场;空客方面,发布的《2011年至2030年全球市场展望》预言,未来20年中,中国航空市场将保持7.2%的年均增长率,是全球增长最快的市场之一。

 

可见,无论是大飞机,还是小飞机,我国航空工业的投资规模都将十分庞大,这也必将推动机床工具等装备制造业的发展。

 

一、现代飞机结构件的发展方向

 

1.结构特点

 

现代飞机为满足高速、高机动、高负载和远航程等性能要求,大量地采用新技术、新结构、新材料,其零件越来越向尺寸大型化、型面复杂化、结构轻量化、材料多元化和制造精密化发展。如飞机机身结构件的典型零件梁、框、肋、壁板、桁条以及航空发动机的关键件机匣、各类叶片和整体叶盘等,其轮廓大而形状各异。为了减轻飞机的重量,增加飞机的机动性及有效载荷和航程,现代飞机都进行了轻量化设计,广泛采用高强度的新型轻质材料。而为了提高零件的强度和可靠性,主要采用了整体毛坯件和薄壁整体框架结构,零件材料除了大量采用铝合金外,还广泛采用钛合金、耐高温合金、高强度钢、复合材料和工程陶瓷等难加工材料。

 

2.工艺特点

 

各类零件规格尺寸和结构相差悬殊,机床工具等工艺装备通用性不高。如加工机身结构件需要采用高刚性的高效、大型、高速机床,加工发动机关键件需要采用精度及柔性高的精密机床,加工机载设备零件的需要采用多功能的复合机床。

现代航空制造业所面临的通常都是多品种、小批量、短生产周期的生产任务,因此要求工艺系统有较高的响应速度。

 

产品零件结构复杂,加工难度大。零件的外形涉及机身外形、机翼外形、翼身融合区等,多数零件与飞机的气动外形相关,周边轮廓与其他零件还有复杂的装配协调关系。

 

零件切削加工量大。由于越来越多的采用整体结构设计,使得需要切削加工的零件数量大幅增加,而且大部分零件在切削过程中材料去除量非常大,部分飞机结构件的材料去除率达90%以上。

 

薄壁、易产生加工变形。存在大量的薄壁、深腔结构,为典型的弱刚性结构。

 

加工精度高。由于要实现无余量装配,对工艺分离面的对缝、间隙等要求十分严格,零件制造精度要求高。

 

刀具及切削参数选用困难。由于刀具工业的发展赶不上新材料的开发和应用步伐,又缺少加工切削数据库的支持,使得如何合理选择刀具和科学选用加工参数成为工艺技术的一个难点。

 

航空零部件加工
  

 3. 发展趋势

 

实现产品全生命周期的数字化管理是发展的核心。包括数字化样机、数字化设计、数字化加工、数字化装配、数字化检测及数字化信息管理等,最终达到完全实现产品在各个阶段的信息集成与共享。

 

新型复合材料的应用比例越来越大。以碳纤维为代表的陶瓷基、树脂基及高温复合材料将不断地开发出来并应用于现代飞机上,给机床及刀具工业提出了新的要求。

 

航空整体结构件将取代传统的“多件连接”的结构形式,复杂形状构件的整体精密成形和“锻造+切削加工”的生产方式将成为航空结构件发展的必然趋势。

 

数控复合加工技术是提高加工效率、增加装备柔性、保证产品质量的有效手段,必将成为航空制造业主要采用的零件加工技术。

 

高速、高效的切削加工技术需求强烈,发展迅速,推广应用的前景广阔。

 

为减少切削量和实现无余量装配,成形技术和加工技术日趋精密化。

 

虚拟制造和网络加工技术将广泛应用。以仿真技术为基础的虚拟制造技术能够大幅缩短产品的研制周期,提高产品合格率。而基于网络的加工技术可以组建产品级的动态企业联盟,从而实现协同设计和异地制造。

 

 

二、飞机结构件对数控设备的加工要求

 

飞机制造中需要用机床加工的典型零件,主要有飞机机身结构件和发动机的关键零件两部分:

 

1.机身结构件典型零件

 

飞机机身结构件的典型零件有梁、筋、肋板、框、壁板、接头、滑轨等类零件。以扁平件、细长件、多腔件和超薄壁隔框结构件为主。毛坯为板材、锻件和铝合金挤压型材。材料利用率仅为5%-10%左右,原材料去除量大。

 

    机身结构件典型零件的结构特点 1)件的轮廓尺寸越来越大。如有的梁类零件的长度已达到13m2)零件的变斜角角度变化大,超薄壁等。最薄处尺寸只有0.76mm左右。3)零件的结构越来越复杂,很多零件采用整体结构。 4) 零件的尺寸精度和表面质量要求越来越高,如有些零件加工后出现的毛刺等缺陷,不允许用人工去除。

    加工飞机机身典型零件所需主要设备:1)三坐标加工中心,如大型龙门立式加工中心; 2)五轴联动加工中心,如大型龙门立式加工中心,应配备A/B摆角铣头或A/C摆角铣头; 3)从发展考虑,需要大型龙门式双主轴五坐标加工中心,工作台尺寸5m×20m,用于加工梁类零件; 4)加工铝合金件需要大功率高速加工中心,功率≥40kW,主轴转速20000r/min以上,带两坐标摆角铣头; 5)由于整体铝合金件切削加工去除量大,为便于排屑,最好需要工作台可以翻转90°的卧式加工中心,目前,国内尚无这种卧式加工中心; 6)飞机机身结构件品种多,形状各异,且工艺刚性差,需用大量卡具。为降低成本,缩短生产准备周期,需要各种柔性卡具; 7)钣金成形件主要涉及蒙皮、型材、导管等曲面成形,要求成形精准。为保证制造精度,需要大规格蒙皮拉伸机;蒙皮滚弯成形机;还有三轴滚校平机、型材拉弯机、导管成形机等。飞机部件装配还需自动钻铆设备;8)为减轻飞机重量,复合材料的应用越来越多,制作复合材料构件需要铺带机等等。    

 

2.飞机发动机的关键件与加工要求

 

飞机发动机的关键件有机匣、各类叶片和整体叶盘。

 

机匣加工:

 

航空发动机机匣有三类,一类是对开环形结构,一类是整体环形结构,还有一种是异形壳体。机匣材料是一种难加工的耐高温的高强度钛合金材料。机匣又是薄壁、弱刚性结构,型面复杂,精度要求高,加工难度大。机匣是大型零件,一台推力为15000公斤航空发动机机匣直径为φ800mm。大飞机的大型风扇机匣外形尺寸φ1823.5mmx546mm,最薄处壁厚3mm。所以,机匣加工需要中、大型多功能、高精度数控机床。如加工直径为φ2000mm的数控立车和精密数控立车;工作台尺寸为2400mm×5000mm的龙门式五轴联动加工中心,需具备双工位、在线测量和仿真功能,刀库容量60把刀左右,数控系统具有高级编程功能,工作台3000mm×5000mm的龙门式数控镗铣床。

 

叶片加工:

 

航空发动机的叶片材料为耐高温的钛合金材料,需用五轴联动加工中心,五轴高速龙门铣等加工叶片形面。叶根榫头的加工需用拉床和缓进给强力磨床,并希望缓进给强力磨床具有换砂轮功能和滚轮修砂轮装置,还需要有在线测量、程序调整和自动补偿功能。

 

叶片形面用电解加工可大大提高加工效率,还需用数控六轴砂带抛光设备抛光。希望有叶片形面检测设备。

 

大型宽弦空心风扇叶片采用宽弦、空心、带阻尼凸台结构,直径φ1600mm以上,风扇叶尖速度高达457m/s,选用重量更轻的钛合金或树脂基材料,制造这类叶片需要五坐标叶片铣床;自动抛光机;组合封焊和扩散连接及超塑成形设备等。

 

叶片有很多冷却用的小孔,用电脉冲打孔,比用激光打孔好(激光打孔有硬化层),但现在,电加工打孔机床没有打孔深浅的显示,操作困难。希望能解决这个问题,能显示打孔的深浅。而耐1100°C高温的镍基单晶涡轮叶片具有很好的高温强度和综合性能,叶片上有许多直径为φ0.3~φ0.4mm的冷却气膜孔,制作这类叶片,需要定向/单晶熔铸炉、陶瓷型芯焙烧炉、制芯机、磨削中心、数控缓进给磨床以及叶片制孔的电液束流设备和小孔加工单元等装置。

 

整体叶盘加工:

 

整体叶盘是薄壁盘类零件,叶盘圆周上有装叶片的榫槽。直槽可用拉削加工和磨削加工。圆弧形榫槽可用铣削和成形磨加工,但圆弧形榫槽的检测困难。叶环和叶盘的加工需要数控卧车、精密数控立车。要求加工机床的刚性好,定位精度高,定位精度约为23μm。整体叶盘的叶片部分,可用五轴高速加工中心加工,还可以用电火花成形加工。重型燃机叶盘直径可达20003000mm,需要用砂轮线速度100m/s以上的高速磨床加工。

 

    加工发动机关键零件所需的主要设备有: A/B摆角铣头或A/C摆角铣头的五轴联动加工中心; 五坐标叶片铣床; 整体叶盘高效加工中心; 工作台3000mm×5000mm数控龙门镗铣床; 精密数控立式车削中心; 数控立式车床; 精密数控车床; 车铣复合加工中心; 榫齿倒圆专用加工中心; 激光熔覆加工机床; 电火花铣削加工机床; 数控卧式车床; 数控立式磨床; 数控缓进给磨床; 端面弧齿磨床; 高速转子叶尖磨床; 700t电动螺旋压力机; 板类件无模多点成形压力机; 定向/单晶熔铸炉; 用于叶片制孔的电液束流设备、小孔加工单元以及真空热处理炉等等。

  

上述设备要求机床具有足够的刚性,操作简单,人机界面清楚,具备样条插补(NURBS)功能,过程均匀控制,以减少对拐角处加工精度的影响,还具有在线测量和仿真功能。

 

 三、航空制造业对我国机床企业的要求
  

目前,我国航空制造技术虽然取得了长足的进步,但与国外发达国家相比还是存在较大的差距。主要表现在数控加工技术的应用水平整体不高,与优质高效的加工要求相去甚远;对新型机床的性能及其加工技术掌握不够;部分关键零件的工艺还依赖于个人的经验,工艺能力普遍不足;切削工具的制造、管理和配套水平低,刀具及其切削参数的选用缺少科学依据,制造成本居高不下;航空制造数据库还没有系统的建立起来,各先进制造单元大多数还处于独立运行状态,集成度差,未能形成先进制造技术的综合实力。

 

国家重大装备的发展需求,给机床工具产业的发展指明了方向。针对航空航天装备的需求与发展特点,如何满足航空航天工业对制造装备的需求,更好地服务于航空航天工业是机床工具企业必须解决的问题。

 

大力发展多功能的复合机床。虽然目前有的加工中心已实现能将车、铣、镗、磨、抛光等多种机加工工序复合在一台机床上,但这仍不能完全满足未来航空关键零件的加工。而将机械加工与激光、电、化学、超声波等不同机理的加工方法进行复合,兼备多种不同工艺特点的复合加工机床在今后的航空航天制造业中将有广阔的发展应用前景。

 

协调机床主机与数控系统、功能部件、切削刀具和测量装备的平衡发展,完善产品功能,提高关键配套设备自主开发和制造能力。

 

深入进行用户的加工工艺研究,开发成套的机床装备和工艺技术。装备服务于工艺,工艺是装备的目的,为实现工艺与装备的紧密融合,机床企业必须了解和熟悉用户工艺,关注用户制造工艺技术发展的动态,准确地为产品进行市场定位,研发满足用户要求的新装备。力争在提供给用户机床设备的同时,也提供工艺技术上的整体解决方案,以提升企业和产品的竞争力。

 

重视系统设计,融入信息技术,推行数字化制造,大力提高机床装备的制造工艺水平和整机的可靠性及稳定性。

在机床装备研发技术路线上,坚持以数字化为主体,以集成化为手段,以复合化为特色,以高速化、精密化和绿色化为目标,突出自动化、网络化,并最终实现智能化。

 

    投稿箱:
        如果您有机床行业、企业相关新闻稿件发表,或进行资讯合作,欢迎联系本网编辑部, 邮箱:skjcsc@vip.sina.com
更多本专题新闻
名企推荐
山特维克可乐满
哈斯自动数控机械(上海)有限公司
西门子(中国)有限公司
哈挺机床(上海)有限公司
北京阿奇夏米尔技术服务有限责任公司
陕西秦川机械发展股份有限公司